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Abstract 

 

To significantly improve the simulation of climate by general circulation models (GCMs), 

systematic errors in representations of relevant processes must first be identified, and then 

reduced.  This endeavor demands that the GCM parameterizations of unresolved processes, in 

particular, should be tested over a wide range of time scales, not just in climate simulations.  

Thus, a numerical weather prediction (NWP) methodology for evaluating model 

parameterizations and gaining insights into their behavior may prove useful, provided that 

suitable adaptations are made for implementation in climate GCMs.  This method entails the 

generation of short-range weather forecasts by a realistically initialized climate GCM, and the 

application of six-hourly NWP analyses and observations of parameterized variables to evaluate 

these forecasts.  The behavior of the parameterizations in such a weather-forecasting framework 

can provide insights on how these schemes might be improved, and modified parameterizations 

then can be tested in the same framework.    

In order to further this method for evaluating and analyzing parameterizations in climate 

GCMs, the U.S. Department of Energy is funding a joint venture of its Climate Change 

Prediction Program (CCPP) and Atmospheric Radiation Measurement (ARM) Program:  the 

CCPP-ARM Parameterization Testbed (CAPT).  This article elaborates the scientific rationale 

for CAPT, discusses technical aspects of its methodology, and presents examples of its 

implementation in a representative climate GCM.   

Capsule summary:  Numerical weather prediction methods show promise for improving 

parameterizations in climate GCMs. 
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1. Introduction 

Climate simulations performed with general circulation models (GCMs) are widely viewed as 

the principal scientific basis for developing policies to address potential future global climate 

change (Houghton et al. 2001). In order to reduce uncertainties in these GCM projections of 

future climate, there is a compelling need to improve the simulation of processes that produce the 

present climate.  This undertaking demands close attention to systematic errors in GCM 

simulations. 

Systematic errors are persistent (average) departures of the model solution from an 

appropriate observational standard.  For example, the GCM systematic climate error is defined 

by the departure of the simulated climate statistics from the observed (e.g. by a difference in 

monthly means).  For GCMs used in numerical weather prediction (NWP), an additional and 

relevant systematic error is defined instead by the mean departure of the model forecast from 

observations at short time scales.   As the length of the forecast increases, the systematic forecast 

error approaches the systematic climate error (Palmer 1999). 

Thus, in order to enhance GCM performance ongoing interdependent efforts are needed:   

1) to diagnose the details of model systematic errors by comparing GCM simulations with 

available observations over a range of time scales;  

     and  

2) to reduce these systematic errors by improving the representation of key processes, and 

thereby increase the accuracy of GCM simulations relative to available observations. 
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For many years, the Working Group on Numerical Experimentation (WGNE) of the World 

Climate Research Programme (WCRP) has coordinated efforts to diagnose systematic errors in 

atmospheric GCMs (AGCMs).  WGNE, for example, has sponsored conferences on the 

characteristics and causes of systematic errors in GCMs designed both for NWP and climate 

applications (WGNE 1988, Jasper and Meighen 2000).  WGNE also has promoted collaborative  

initiatives such as the Atmospheric Model Intercomparison Project (AMIP) (Gates 1992, Gates 

et al. 1999) to analyze systematic climate errors in AGCM simulations made with prescribed 

ocean boundary conditions.  The WCRP Working Group on Coupled Modelling (WGCM) is 

now extending the diagnosis of systematic errors to climate simulations of coupled ocean-

atmosphere GCMs (OAGCMs) through initiatives such as the Coupled Model Intercomparison 

Project (CMIP) (Meehl et al. 2000). 

Ongoing efforts to reduce GCM systematic errors entail both enhancements of the resolution 

at which the model state variables (e.g. for AGCMs, the pressure, temperature, moisture, and 

wind fields) are predicted, and fundamental improvements in the parameterizations of unresolved 

subgrid-scale processes (e.g. radiation, clouds, convection, precipitation microphysics, turbulent 

fluxes and diffusion).  In climate simulations, the parameterizations are crucially important for 

correct representation of relevant processes, while the computational costs of increasing 

resolution are very high.  Hence, parameterization development usually is emphasized over 

resolution enhancement as the chief means of reducing systematic errors in GCMs designed for 

climate simulation (hereafter, "climate GCMs")   

The deciding factor in choosing a new parameterization for a climate GCM is whether its 

inclusion brings the simulated climate into closer agreement with the observed statistics.  

However, there are inherent limitations in evaluating GCM parameterizations only in climate-
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simulation mode.  First, due to sampling limitations, the observed climate statistics only roughly 

approximate the statistics of the global climate system--to greater or lesser degree, depending on 

the process of interest (e.g. Kistler et al. 2001).  Moreover, because the GCM climate state 

reflects compensating errors in the simulation of many nonlinear processes, it is very difficult to 

attribute these errors to particular parameterization deficiencies.  In such a context also, the 

parameterizations are driven by an unrealistic large-scale state, so that it is difficult to evaluate 

their performance objectively (Schubert and Chang 1996).  

For these reasons, climate GCM developers have adopted process-oriented approaches that 

employ high-frequency local observations for evaluating parameterizations.  Some effects of 

introducing a new GCM parameterization can be assessed, for example, within the framework of 

single-column models (SCMs) or cloud-resolving models (CRMs) (e.g. Betts and Miller 1986, 

Krueger 1988, Krueger et al. 1995, Randall et al. 1996, Xie et al. 2002, Xu et al. 2002, Randall et 

al. 2003).  The strength of this approach is that the column parameterizations are driven by an 

evolving large-scale dynamical state that is specified from observations.  However, because all 

relevant high-frequency dynamical forcings for the atmospheric column must be specified, there 

are only a limited number of observational cases at a few locations that can be studied with an 

SCM or CRM.   Feedbacks from the column parameterizations to the large-scale dynamics also 

cannot be represented by these models. 

In order to include such feedbacks, some model developers (e.g. Jeuken et al. 1996, Kaas et 

al. 1999) retain the full GCM, but continuously relax the simulated mass and momentum fields 

toward a six-hourly (6-h) global weather analysis.  The objective is to constrain the GCM large-

scale dynamics close to reality so that the resulting mean short-term tendency errors are 

attributable mainly to parameterized physical processes.  Diagnosis of these tendency errors then 
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can yield insights which might suggest possible ways to reduce climate systematic errors.     

Operational NWP centers follow yet another methodology in developing parameterizations 

for fine-resolution weather forecasting GCMs: the model dynamics are allowed to evolve freely 

and to interact fully with the parameterizations, so that all the forcings and feedbacks are 

generated by the GCM (e.g. Jakob 2003).  In this approach, the state variables of the forecast 

GCM are first initialized by a data assimilation system (DAS) which usually is built around the 

GCM itself.  After ingestion of all available observations (e.g. surface, radiosonde, aircraft, and 

satellite measurements), the DAS applies variational methods to produce an optimal analysis of 

the global weather that defines the initial conditions for the forecast GCM (Daley 1991, Kalnay 

2003).  In addition, the DAS provides departures of the model from observations that can be used 

as a further guide to parameterization errors. 

Given an accurate analysis, it is reasonable to assume that the model state remains close to 

"truth" in the early period of the forecasts, so that the systematic forecast error can be attributed 

largely to parameterization deficiencies.  This systematic error is estimated from differences 

between the mean (at fixed elapsed times) of a sequence of short-range (~five-day) forecasts of 

state variables and corresponding NWP analyses of weather observations.  In addition, errors in 

parameterized model variables (e.g. radiative and turbulent fluxes, cloud properties, 

precipitation, etc.) are estimated from field observations or other data that are not ordinarily 

assimilated by the DAS (e.g. Mace et al.1998, Miller et al. 1999).  Based on developers' insights 

gleaned from these differences, selected model parameterizations then are modified so as to 

ameliorate the perceived deficiencies.  These scheme changes also are evaluated in short-range 

GCM forecasts to determine whether they reduce the model's forecast systematic errors.  If that 

is the case, the new parameterizations usually also are evaluated in model integrations beyond 
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the deterministic forecast range of ~ 15 days to determine whether they reduce climate 

systematic errors.  

In view of the benefits of applying this NWP development methodology to fine-resolution 

forecast models, some scientists (e.g. Hollingsworth 1998, Miller 1999, Jakob 2003) have 

advocated adoption of analogous procedures for developing parameterizations in coarse-

resolution climate GCMs.  To realize this goal, alternatives to NWP procedures that rely on a 

GCM-compatible DAS must be developed, since many climate models lack such a resource.  

Working relationships also need to be forged between GCM developers and parameterization 

specialists who do not always share the same institutional affiliations.   

The U.S. Department of Energy (USDOE) is well-positioned to foster these scientific 

collaborations because of the support it provides to GCM developers through the Climate 

Change Prediction Program (CCPP) and to parameterization specialists through the Atmospheric 

Radiation Measurement (ARM) Program.  Moreover, the extensive high-frequency ARM field 

data that have been collected over the last decade (Stokes and Schwartz 1994, Ackerman and 

Stokes 2003) are potentially very useful for evaluating GCM parameterizations (e.g. Morcrette 

2002).  Hence, the USDOE has established a new joint initiative, the CCPP-ARM 

Parameterization Testbed (CAPT) in order to support implementation of the NWP methodology 

in climate GCMs, and to facilitate the needed scientific collaborations as well. 

The remainder of this article reports on the progress of CAPT to date.  Section 2 discusses 

the scientific premise of the project and an outline of the steps in the CAPT diagnostic protocol.  

Section 3 elaborates technical aspects of implementing a prototype of the CAPT protocol for 

version 2.0 of the Community Atmosphere Model (CAM2), an AGCM developed under the 

auspices of the National Center for Atmospheric Research (NCAR) (Collins et al. 2003, Kiehl 
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and Gent 2004).   Section 4 presents preliminary results of applying the CAPT methodology in 

this climate model, and Section 5 briefly summarizes the main points. 

2.  Premise and Protocol 

CAPT is promoting a diagnostic approach which is new for climate models that are not 

associated with operational forecast centers: the use of 6-h global NWP analyses and high-

frequency unassimilated observations of parameterized variables (such as provided by ARM) to 

evaluate short-range weather forecasts made with climate GCMs that are initialized realistically.   

The CAPT premise is that, as long as the dynamical state of the forecast remains close to that 

of the verifying analyses, the systematic forecast errors are predominantly due to deficiencies in 

the model parameterizations.  It is then appropriate to compare parameterized variables with 

available observations collected under the same dynamical conditions, and to interpret their 

differences as indications of parameterization shortcomings.  In themselves, these differences do 

not automatically determine a needed parameterization change, but they can provide developers 

with insights as to how this might be done. Then if changing the parameterization is able to 

render a closer match between parameterized variables and the evaluation data, and if this 

change also reduces the systematic forecast errors or any compensating errors that are exposed, 

the modified parameterization can be regarded as more physically realistic than its predecessor.  

The basic elements of the CAPT protocol are illustrated in Figure 1. First the climate GCM is 

initialized without recourse to a DAS, but with its atmospheric state specified from actual 

synoptic conditions, while also being in approximate dynamical balance (see details in Section 

3b). Next, the climate model is run in a short-range forecast mode, and these predictions are 

compared against the actual evolving atmospheric state, as determined both from NWP analyses 

and unassimilated observations of parameterized variables.  Differences between the model 
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predictions and these evaluation data are diagnosed in order to learn more about the 

parameterization deficiencies, and to aid the developers in establishing needed changes.  The 

efficacy of modifying the parameterizations then can also be evaluated in a short-range 

forecasting framework. 

However, the overriding goal is not that the climate GCM produce the "best" weather 

forecast, but only a good approximation thereof, so that the parameterizations respond to a 

realistic large-scale state.  Thus, even though the weather forecasts of a coarse-resolution climate 

GCM may be inferior to those of a fine-resolution NWP model, relative decreases in systematic 

error are still indicative of improved parameterizations in the climate GCM.  Moreover, the rich 

variety of weather phenomena allows the model parameterizations to be tested and diagnosed 

over a wide range of conditions, and at much less computational expense than is required in 

climate-simulation mode. In CAPT, therefore, weather forecasting is viewed as a context for 

evaluating and analyzing climate GCM parameterizations, and not as an end in itself.   

But will the CAPT methodology enhance the performance of the GCM in climate 

simulations?  In principle, yes: modified parameterizations that reduce systematic forecast errors 

should also improve the simulation of climate statistics, which are just aggregations of the 

detailed evolution of the model.  In fact, connections between forecast errors and climate errors 

are often observed in practice.   An example of this in CAM2 is an anomalous split in the Inter-

Tropical Convergence Zone (ITCZ) which manifests itself very early in the model forecasts, and 

then grows more pronounced with time (Figure 2).  Some systematic climate errors develop 

more slowly, however. An example in CAM2 is a cold bias in the tropical tropopause 

temperature that sets up gradually, presumably because the controlling processes have long 

natural time scales.  It follows that slow climate errors such as these are not as readily amenable 
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to examination by a forecast-based approach. 

Thus, once parameterization improvements are provisionally indicated by better short-range 

forecasts, enhancements in model performance also must be demonstrated in progressively 

longer (extended-range, seasonal, inter-annual, decadal, etc.) simulations.  GCM 

parameterizations that are improved at short time scales also may require some further "tuning"  

of free parameters in order to achieve radiative balance in climate mode.  Parameterization 

evaluation in climate simulations is therefore a necessary part of the CAPT protocol (Figure 1).  

3. Technical Details 

 Several technical aspects of the CAPT protocol, as applied thus far to the CAM2 model, are 

elaborated here. 

a. Evaluation data 

The efficacy of the CAPT methodology depends crucially on the accuracy of current NWP 

analyses.  For instance, earlier attempts (e.g. Williamson and Daley 1986) to diagnose 

parameterizations by using analyses to evaluate the weather forecasts of climate GCMs were 

thwarted by the strong influence of the NWP model on the analysis, which had especially 

negative impacts on the accuracy of the analyzed atmospheric moisture and parameterized 

variables. 

NWP analyses now are much better approximations of the actual atmospheric state, as shown 

by recent findings (Simmons and Hollingsworth 2001, Hollingsworth et al. 2002) that 

representative operational short-range weather forecasts can track atmospheric observations with 

an accuracy that lies within current measurement uncertainties.  Hence, in observation-rich 

regions (e.g. continental U.S. and Europe), the analyses from a modern NWP operational DAS 
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(and, by extension, multi-decadal reanalyses) can be regarded as a reliable reference for 

identifying errors in GCM short-range forecasts.   CAPT therefore is using the latest 6-h 

reanalyses of the European Centre for Medium-Range Weather Forecasts (ECMWF ERA-40, 

ECMWF 2002) and of the National Centers for Environmental Prediction (NCEP/DOE R2, 

Kanamitsu et al. 2002) as the main data for global evaluation of the CAM2 short-range weather 

forecasts.   

NWP reanalyses are not sufficient, however, to evaluate all aspects of a GCM forecast, since 

they cannot furnish precise checks on physical forcings.  (Estimates of these forcings from 

current reanalyses strongly depend on the parameterizations of the analysis GCM.) Thus, 

ancillary high-frequency local observations such as the ARM field data are indispensable for 

independent evaluation of GCM parameterizations. Moreover, field observations of state 

variables can corroborate the NWP analyses in identifying local forecast errors. 

ARM field data at 6-h and higher frequencies  (in some cases, at frequencies comparable to a 

GCM time step of 30 minutes) are available at sites in the U.S. Southern Great Plains (SGP), the 

North Slope of Alaska (NSA), and the Tropical West Pacific (TWP) (ARM 2002).  The most 

comprehensive high-frequency observations are supplied during sporadic intensive observation 

periods (IOPs) at the ARM SGP site, such as April 1997 and June/July 1997 (Table 1).  

In contrast to methods relying on SCMs or CRMs, CAPT can utilize other data sets that are 

not as comprehensive as those of ARM, such as coordinated satellite, aircraft, and surface 

measurements that have been collected during field campaigns. For example, data sets of this 

type have been centralized for investigations conducted by participants in the Global Energy and 

Water Cycle Experiment (GEWEX) Cloud System Study (GCSS 2002, Randall et al. 2003).  

Similar field data at some 30 other sites are being collected during the 2003-2004 GEWEX 
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Coordinated Enhanced Observing Period (CEOP) (Bosilovich and Lawford 2002).   

To make such observations fully relevant for model evaluation, the data should be aggregated 

to the scale of a GCM grid box. Hence, observations of forcings in different locations at the 

ARM SGP site have been spatially averaged, and atmospheric state variables also have been 

subjected to objective variational analysis to ensure overall conservation of heat, moisture, and 

momentum (Zhang and Lin1997, Zhang, et al. 2000).  On the other hand, some GCM 

parameterized variables (e.g. cloud properties) need to be translated into quantities that can be 

compared more readily with observations.  For example, CAPT currently is exploring use of the 

International Satellite Cloud Climatology Project (ISCCP) simulator (Klein and Jakob 1999, 

Webb et al. 2001) for this purpose.  

b. Initialization procedures 

Like many climate models, CAM2 lacks a compatible DAS (although a community data 

assimilation testbed is under development--see online information at http://www.cgd.ucar.edu/ 

DART), and so it is necessary to devise simple alternatives to standard NWP initialization 

procedures.  Because of their high accuracy, NWP reanalyses can be used directly to initialize 

the model.  It is also desirable to use atmospheric reanalyses from diverse NWP analysis models, 

so as to estimate the sensitivity of the CAM2 parameterizations to this difference. Hence, CAPT 

is using both the ECMWF ERA-40 and NCEP/DOE R2 reanalyses to initialize the CAM2 

model.  This entails a three-dimensional mapping of finer-resolution reanalysis data to the 

coarser (spectral T42/L26) CAM2 resolution. 

Operational NWP centers routinely map state variables from high-resolution operational 

analyses to lower resolutions in order to provide initial conditions for their ensemble forecast 

systems, and for developmental research forecasts.  These mapping procedures also have been 
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applied when exchanging analyses between operational centers, for example to investigate the 

effect of the initial conditions on specific forecasts (e.g. Harrison et al. 1999).  CAPT has 

successfully adopted the relevant NWP algorithms (White 2001), even though these normally are 

not applied for resolutions as coarse as those of typical climate GCMs.  

As noted previously, the objective is to obtain a good estimate of the atmosphere/land initial 

conditions, rather than a state which gives the best forecast. Although operational centers might 

still include a mass-momentum balancing phase ("initialization", in NWP parlance) after the 

resolution change, forecasts with CAM2 initialized from both the ECMWF ERA-40 and 

NCEP/DOE R2 reanalyses are found to be relatively noise-free. Should initialization noise arise 

in specific cases, a temporal digital filter could easily be included (Lynch and Huang 1992, 

Polavarapu et al. 2000).  

For a prototype implementation, initial values of the parameterized variables that are 

predicted based on previous values (e.g. cloud water in CAM2) are obtained via spin-up 

procedures that are described below in conjunction with the land initialization.  These methods 

are presently adequate because the time scales for the adjustment of the parameterized variables 

are relatively fast, and the model errors are currently very large. As a future refinement, CAPT 

will need to develop mapping procedures for these prognostic parameterized variables as well. 

Initialization of the land is particularly problematical because it is difficult to map discrete 

and discontinuous land variables between different resolutions, especially when there may be 

dissimilar definitions of soil types and variables in the systems that are involved in this mapping.  

Thus far, CAPT has applied two procedures to spin up land and atmospheric parameterized 

variables. Both allow the land model (and parameterizations) to interact with and respond to the 

forcing from the atmospheric model, which is constrained to follow the evolution of the observed 
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atmosphere.  CAPT designates these two methods as "forecast/analysis" and "nudging".   

The forecast/analysis method periodically updates (e.g. at 6-h intervals) the atmospheric state 

variables with the interpolated analyses, and lets the coupled land/atmosphere system evolve 

until the next update time. This is akin to the current 6-h update cycle of an NWP DAS (such as 

that used for the NCEP R1 reanalysis--see Kalnay et al. 1996), except that here the atmospheric 

assimilation phase is replaced by the mapping of a high resolution reanalysis to the climate 

model grid.  

The nudging method involves the addition of terms to the atmospheric equations to relax 

predicted state variables toward the reanalysis at a specified (e.g. 6-h) time scale. This procedure 

has been used, for example, to generate a smooth start for NWP model forecasts (Hoke and 

Anthes 1976).  

In order to indicate the minimum period needed for either of these spin-up methods to 

converge to the best state that it can provide, "perfect model" experiments (i.e. using the outputs 

of the CAM2 as input to the forecast/analysis initialization) have been performed.   In these 

simulations, the CAM2 soil moisture, for example, spins up to "correct" values in a few months, 

except when snow is present. Hence, these simple spin-up methods might be generally applicable 

in tropical regions, as well as in warm-season observational periods at the ARM SGP site and 

other mid-latitude locations. Spin-up methods appropriate for snow-covered regions will require 

further development. 

In mapping from analyses to the climate GCM, there is some (probably small) risk of 

obtaining a false response to a parameterization change.  However, in order to produce an initial 

atmospheric state that is model-consistent, it would be necessary to use a DAS that is based on 

the GCM, thereby excluding from consideration many climate models that lack this capability.  
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Moreover, to produce the best estimate of the initial state, the DAS would need to be run at 

higher resolution than is typical for climate simulation, since even the large scales in NWP 

analyses are improved with enhanced resolution.  

c. Model forecasts  

The current CAPT practice is to generate five-day (0-120 h) GCM forecasts for each day 

during the time period of interest (e.g. an ARM IOP), and to archive the forecast data at intervals 

that match the sampling of the field observations (e.g. at 3-h frequencies for comparison with 

ARM variational analysis data).  For each forecast, the model atmosphere is initialized by 

applying either the nudging or forecast/analysis methods described previously.   

Then the mean (at fixed elapsed times) of a sequence of forecasts initialized on different days 

is computed.   This mean forecast may be calculated from model predictions that are initiated on 

consecutive days, or alternatively from forecasts that are stratified according to similar initial 

conditions, so as to assess the sensitivity of the model parameterizations to particular synoptic or 

seasonal conditions (Jakob 2003). 

In order to estimate the GCM systematic forecast error, the difference between the mean 

forecast and corresponding evaluation data is examined.  Both the magnitude and pattern of this 

systematic error are of diagnostic value, and these can be quantified using standard NWP metrics 

defined by the World Meteorological Organization (WMO 1999). For example, the mean bias 

and root-mean-square (RMS) statistics provide information on error amplitudes, while anomaly 

correlations supply error-pattern information.   
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4. Results 

Here, selected results of applying the CAPT protocol to the CAM2 model are shown, so as to 

illustrate the concepts discussed in previous sections.   

First, in order to verify that simple initialization procedures are able to produce a large-scale 

dynamical state that is close to that of the verifying analyses, the skill of the CAM2 forecasts of 

the 500 hPa height field is evaluated, following established guidelines (WMO 1999).  For 

example, the mean anomaly correlation (AC) of these forecasts (a commonly accepted measure 

of forecast skill) can be computed, where the verification anomalies are defined by the 

departures from a thirty-year monthly mean climatology, such as that of the ECMWF ERA-40 

reanalysis for the period 1970-1999.  (The AC calculations are found to be insensitive to the 

choice of climatology.)  

Figure 3 shows the AC decay (mean AC as a function of forecast day) of the CAM2 model 

forecasts, initialized from both the ECMWF ERA-40 and the NCEP/DOE R2 reanalyses, during 

the April and June/July 1997 ARM IOPs.  These are compared with the AC decay of analogous 

forecasts from the models that generated the ECMWF ERA-40 and NCEP/DOE R2 reanalyses, 

where values less than 0.6 indicate an absence of useful forecast skill.   

In general, the CAM2 forecasts of hemispheric-scale 500 hPa heights are seen to be 

surprisingly "competitive" with those from the two NWP models.  In particular, the AC decay of 

the CAM2 in the first two forecast days is small, implying that its dynamical state remains close 

to those of the reanalyses during the early part of the forecast.  (Inspection of weather maps that 

include the ARM SGP site during these periods indicates that the CAM2 forecasts of 500 hPa 

heights also are skillful at synoptic scales.)  The skill scores of the CAM2 forecasts show greater 

separation in the Southern Hemisphere (Figures 3b and 3d), indicating a generally stronger 
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dependence on initial conditions, and a somewhat higher accuracy of the ECMWF ERA-40 

reanalysis relative to the NCEP/DOE R2.   As expected, the AC decay of all forecasts is more 

rapid during boreal summer (Figure 3c) when mid-latitude synoptic control is weaker and 

forecast skill is more strongly influenced by physical processes.   The comparatively low decay 

of the ECMWF ERA-40 model skill in this season thus attests to the quality of its physical 

parameterizations. 

To place these results in perspective, Table 2 compares the CAM2 scores for the Northern 

Hemisphere mid-latitudes at day 5 with two operational NWP models for the April 1997 IOP 

period and for subsequent Aprils in the years 2000 and 2003 for the operational models.  (CAM2 

forecasts have not yet been made for these years.)  The higher accuracy of the more recent 

ECMWF ERA-40 reanalysis implied by Figure 3 reflects, in part, the NWP technological 

advances made since 1997, as suggested by the skill trend of the operational models (Simmons 

and Hollingsworth 2001). Moreover, the fact that the CAM2 five-day AC in Table 2 is higher 

than representative operational NWP models in 1997 demonstrates that a coarse-resolution 

climate GCM can make skillful forecasts of the large-scale synoptic flow when initialized with 

an accurate analysis.  

However, it is found that the relatively high skill of CAM2 forecasts of the 500 hPa heights 

does not generally carry over to predictions of large-scale atmospheric moisture, which is tied 

more directly to the model's physical parameterizations. This model shortcoming is found locally 

as well, for example in evaluating a sequence of CAM2 daily forecasts of atmospheric relative 

humidity at the ARM SGP site during the period 19-25 June 1997 (Figure 4).  Here it is seen that 

the temporal variation of the vertical profile of relative humidity obtained from the ARM 

measurements (Figure 4a) and from the ECMWF ERA-40 reanalysis (Figure 4b) are quite 
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similar.  Relative to these evaluation data during most days of this period, the CAM2 forecasts a 

lower troposphere that is too dry, and an upper troposphere that is too moist.   

The anomalous CAM2 relative humidity profile on June 19-22 is indicative of a model 

systematic error, as revealed both by the mean five-day model forecast relative to ARM 

observations during June/July 1997 (Figure 5a) as well as by the CAM2 June/July climatology 

relative to that of the ECMWF ERA-40 and the NCEP/DOE R2 reanalyses (Figure 5b). Given 

the relatively skillful model forecast of large-scale dynamics during this period (Figure 3c), these 

results imply that there are both forecast and climate systematic errors associated with the CAM2 

moist physics parameterizations.   

It is just such model deficiencies that are appropriate to study further in the CAPT framework.  

For instance, the overly dry CAM2 lower troposphere during June/July 1997 at the ARM SGP 

site is consistent with the model's propensity to rain out moisture nearly every day, rather than in 

the episodic bursts that are observed (Figure 6b).  In contrast, the agreement between CAM2 

precipitation forecasts and observations is generally much better during the April 1997 IOP 

(Figure 6a), when large-scale advective forcing is a more significant contributor to the column 

moisture balance (analysis not shown). 

This seasonal sensitivity implies there may be deficiencies in the CAM2 parameterization of 

convective precipitation (although this is certainly not the only possible source of error).  In 

particular, the characteristics of the CAM2 precipitation displayed in Figure 6b are reminiscent 

of problems previously identified in the triggering mechanism of the model's Zhang-McFarlane 

(1995) deep convection scheme when implemented in an SCM (Xie and Zhang 2000).   These 

deficiencies were alleviated by replacing the standard trigger that is based on positive convective 

available potential energy (CAPE) with one based on the rate of dynamic CAPE (DCAPE)  
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generation  by large-scale advective tendencies of temperature and moisture. 

The DCAPE convective triggering mechanism has been implemented in the CAM2, and the 

effects on its forecasts analyzed (Xie et al. 2004).  In the modified model, CAPE can accumulate 

before convection occurs, and thus stronger but less frequent precipitation events are produced, 

yielding somewhat better agreement with ARM observations (Figure 6c).  Xie et al. (2004) show 

that the DCAPE convective trigger also reduces systematic errors in the CAM2 forecasts of 

atmospheric humidity (e.g. Figure 5a) and other variables.  

Further evaluation of the performance of the DCAPE convective trigger in an AMIP climate 

simulation is currently in progress.  This, as well as analysis of other facets (e.g. clouds, surface 

fluxes, and components of energy and moisture budgets) of the forecasts and the climate of the 

standard CAM2 model, will be presented in forthcoming journal articles. 

5. Summary 

CAPT is motivated by the experience of GCM developers that it is very difficult to identify 

particular parameterization deficiencies solely by analyzing a model’s climate statistics, which 

reflect compensating errors resulting from the nonlinear interactions of many different processes.  

The CAPT premise is that studying climate GCMs in a weather-forecasting framework is 

generally a more effective way to identify parameterization deficiencies and to gain insights on 

how these might be ameliorated.   

If a modified parameterization is able to reduce systematic forecast errors (defined relative to 

high-quality observations and NWP analyses), it then can be regarded as more physically 

realistic than its predecessor.  Whether the systematic climate errors of the model also decrease 

must be demonstrated in practice, however. Slowly developing systematic climate errors, for 
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example, probably will remain resistant to significant reduction by such a forecast-based method.  

Thus, CAPT is not a panacea for improving climate GCM parameterizations at all time scales, 

but just one choice from a "toolkit" that may also include, for example, SCMs, CRMs, and 

simplified GCMs.  Nonetheless, we expect that insights obtained from adopting this NWP-

inspired methodology will contribute significantly to the general improvement of GCM climate 

simulation.   
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Table Captions 
 

Table 1. Available observations during ARM intensive observation periods (IOPs) at the 

Southern Great Plains (SGP) site.  Note: NOAA denotes the National Oceanic and Atmospheric 

Administration, GOES the Geostationary Operational Environment Satellite, SIRS the Solar 

Infra Radiation Station, EBBR the Energy Budget Bowen Ratio, MWR the Microwave 

Radiometer. U, V, T, and RH represent horizontal winds, temperature, and relative humidity, 

respectively. LWT and SWT are the top-of-atmosphere longwave and shortwave radiative 

fluxes.  CLDTOT, CLDHGH, CLDMED, and CLDLOW are the total, high, middle, and low 

level cloud amounts, respectively.  LWS and SWS are the surface longwave and shortwave 

radiative fluxes.  LH is the surface latent heat flux, SH the surface sensible heat flux, PW the 

column precipitable water, CLW the column cloud liquid water, and PREC the surface 

precipitation. Us, Vs, Ps, Ts and RHs are the surface u and v wind components, pressure, air 

temperature, and relative humidity, respectively. 

 
 
Table 2.  Anomaly correlation at day 5 of CAM2 forecasts of Northern Hemisphere 500 hPa 

heights for the April 1997 ARM IOP period compared with that of forecasts from the NCEP and 

ECMWF operational models.  CAM.ERA-40 denotes the CAM2 model initialized with ECMWF 

ERA-40 reanalysis; NCEP ops and ECMWF ops are the respective operational model scores, 

which also are shown for comparison in April of 2000 and 2003. 
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Table 1 
 
Instruments Sampling frequency Measured fields 

ARM Radiosondes 3 hours U, V, T, RH 

NOAA Wind Profilers 1 hour U, V 

GOES 30 minutes LWT, SWT, CLDTOT, CLDHGH, 
CLDMED,CLDLOW 

SIRS 1 minute LWS, SWS 

EBBR 30 minutes Surface LH,SH 

MWR 5 minutes Column PW and CLW 

Surface Mesonet Stations 5-30 minutes Surface PREC,Ts,Us,Vs,Ps, RHs 

Cloud Radar, Micropulse Lidar 10 seconds -1 minute Cloud frequency and properties 
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Table 2 
 
Model April 1997 April 2000 April 2003 
CAM.ERA-40 0.83   
NCEP ops 0.74 0.73 0.84 
ECMWF ops 0.78 0.84 0.89 
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Figure Captions 

 
Figure 1: Flow diagram of the CAPT protocol. 

 

Figure 2:  Depiction of Tropical Pacific precipitation in the CAM2 model. In a) a contour plot of 

the CAM2 mean five-day forecast of 3-h accumulations of longitudinally averaged (between 180 

E and 210 E) Tropical Pacific precipitation is shown for June 1997.  (The mean is based on 30 

five-forecasts,  initiated at 00Z each day.)  Here, the precipitation pattern indicates that a split 

ITCZ develops early in the mean forecast.  In b) it is seen that the CAM2 split ITCZ grows more 

pronounced with time, as evinced by the 180-210 E zonal average of 24-h precipitation in the 

mean five-day forecast and in the monthly mean for June 1997, as well as in a 1980-1995 June 

climatology, both from AMIP simulations.  Note that the southern branch of the zonal-average 

split ITCZ in CAM2 precipitation in b) is anomalously intense compared to various estimates of 

observed zonal-average precipitation climatologies, as shown in c) for the Global Precipitation 

Climatology Project (GPCP, for the period 1979-2002), the Special Sensor Microwave Imager 

(SSMI, for 1987-2000), the Tropical Rainfall Measuring Mission (TRMM, for 1998-2003), and 

the Xie-Arkin (X-A, for 1979-1998) data sets. In all cases, precipitation is given in units of mm 

day-1. 



 33

Figure Captions, Continued 

 
Figure 3:  Mean anomaly correlation (AC) for a sequence of forecasts of 500 hPa heights made 

with three GCMs as a function of forecast day during the April 1997 ARM IOP (panels a and b), 

and during the June/July 1997 IOP (panels c and d).  In all cases, the AC is interpolated to a 

common 2.5-degree global grid and spatially averaged (with cosine-latitude weighting) over the 

mid-latitudes of the Northern and Southern Hemispheres (20 N-90N and 20S-90S, respectively).  

Results are shown for the ECMWF ERA-40 reanalysis model initialized with its own analyses 

(in blue); the NCEP/DOE R2 reanalysis model initialized with its own analyses (in red); the 

CAM2 model initialized with ECMWF ERA-40 reanalyses (in green); and the CAM2 model 

initialized with NCEP/DOE R2 reanalyses (in yellow).    

 

Figure 4: Plots of the vertical profile of atmospheric relative humidity (in %) at the ARM SGP 

site are shown at 3-h intervals for the period for 19-25 June 1997, as obtained from a) ARM 

observations, b) the ECMWF ERA-40 reanalysis, and c) a sequence of CAM2 forecasts that are 

initialized at 00Z each day and valid for the period 03Z-24Z (but with the 00Z value shown for 

June 19 supplied by the 24Z forecast for June 18).  Note, the apparent diurnal cycle in the 

relative humidity profile in c) is, in actuality, evidence of the rapid departure of the CAM2 

forecasts from a realistic humidity profile after their initialization at 00Z each day.  
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Figure Captions, Continued 

 

Figure 5: Systematic forecast and climate errors in CAM2 predictions of the vertical profile of 

atmospheric relative humidity at the ARM SGP site relative to ARM observations (in %) are 

displayed.  In a) the evolution of  the mean difference between CAM2 five-day forecasts of the 

relative humidity profile (initialized at 00Z each day of  the June/July 1997 IOP) and the 

corresponding ARM observations is shown.  Note the rapid growth of CAM2 relative humidity 

errors early in the mean five-day forecast and their subsequent diurnal variation, especially in the 

upper troposphere. In b) differences are shown between a ten-year June/July climatology of the 

CAM2 relative humidity profile (generated in an AMIP simulation) and corresponding 

climatologies obtained from the ECMWF ERA-40 reanalysis (solid line) and from the 

NCEP/DOE R2 reanalysis (dashed line).  Note similarities in the vertical distribution of the 

CAM2 systematic errors (overly dry lower troposphere above the boundary layer, and overly 

moist upper troposphere) at both forecast and climate time scales. 

Figure 6: Comparisons of 3-h accumulations of precipitation (in units of mm day-1) at the ARM 

SGP site, as observed (solid line), and as forecast by the CAM2 (dashed line), where the large-

scale atmospheric state of the model was reinitialized each day from ECMWF ERA40 reanalysis. 

In a), the comparison is for the April 1997 IOP, while in b) it is for the June/July 1997 IOP; in 

both cases, the forecasts are made with the standard version of CAM2 (denoted as CAM2O) that 

employed the Zhang-McFarlane parameterization of deep convection.  In c) are shown forecasts 

of June/July 1997 precipitation made with a version of the CAM2 (denoted as CAM2M) that 

included a modified (DCAPE) convective triggering mechanism.  See text for further details. 
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